今天来聊聊关于SPFA算法的原理及证明的文章,现在就为大家来简单介绍下SPFA算法的原理及证明,希望对各位小伙伴们有所帮助。
1、求单源最短路的SPFA算法的全称是:Shortest Path Faster Algorithm,是西南交通大学段凡丁于1994年发表的。
2、从名字我们就可以看出,这种算法在效率上一定有过人之处。
3、很多时候,给定的图存在负权边,这时类似Dijkstra算法等便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了。
4、简洁起见,我们约定加权有向图G不存在负权回路,即最短路径一定存在。
5、如果某个点进入队列的次数超过N次则存在负环(SPFA无法处理带负环的图)。
6、当然,我们可以在执行该算法前做一次拓扑排序,以判断是否存在负权回路,但这不是我们讨论的重点。
7、我们用数组d记录每个结点的最短路径估计值,而且用邻接表来存储图G。
8、我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在当前的队列中,就将v点放入队尾。
9、这样不断从队列中取出结点来进行松弛操作,直至队列空为止。
10、定理:只要最短路径存在,上述SPFA算法必定能求出最小值。
11、证明:每次将点放入队尾,都是经过松弛操作达到的。
12、换言之,每次的优化将会有某个点v的最短路径估计值d[v]变小。
13、所以算法的执行会使d越来越小。
14、由于我们假定图中不存在负权回路,所以每个结点都有最短路径值。
15、因此,算法不会无限执行下去,随着d值的逐渐变小,直到到达最短路径值时,算法结束,这时的最短路径估计值就是对应结点的最短路径值。
16、期望时间复杂度:O(me), 其中m为所有顶点进队的平均次数,可以证明m一般小于等于2:“算法编程后实际运算情况表明m一般没有超过2n.事实上顶点入队次数m是一个不容易事先分析出来的数,但它确是一个随图的不同而略有不同的常数.所谓常数,就是与e无关,与n也无关,仅与边的权值分布有关.一旦图确定,权值确定,原点确定,m就是一个确定的常数.所以SPFA算法复杂度为O(e).证毕.(SPFA的论文)不过,这个证明是非常不严谨甚至错误的,事实上在bellman算法的论文中已有这方面的内容,所以国际上一般不承认SPFA算法。
17、对SPFA的一个很直观的理解就是由无权图的BFS转化而来。
18、在无权图中,BFS首先到达的顶点所经历的路径一定是最短路(也就是经过的最少顶点数),所以此时利用数组记录节点访问可以使每个顶点只进队一次,但在带权图中,最先到达的顶点所计算出来的路径不一定是最短路。
19、一个解决方法是放弃数组,此时所需时间自然就是指数级的,所以我们不能放弃数组,而是在处理一个已经在队列中且当前所得的路径比原来更好的顶点时,直接更新最优解。
20、SPFA算法有两个优化策略SLF和LLL——SLF:Small Label First 策略,设要加入的节点是j,队首元素为i,若dist(j)
21、 SLF 可使速度提高 15 ~ 20%;SLF + LLL 可提高约 50%。
22、 在实际的应用中SPFA的算法时间效率不是很稳定,为了避免最坏情况的出现,通常使用效率更加稳定的Dijkstra算法。
相信通过SPFA算法的原理及证明这篇文章能帮到你,在和好朋友分享的时候,也欢迎感兴趣小伙伴们一起来探讨。
标签:
免责声明:本文由用户上传,如有侵权请联系删除!